
Exercise: Southern Brazilian Portuguese!!
The task is to create a rule system that maps from orthographical strings in Portuguese (this will be
the lexical level) to strings that represent their pronunciation (this will be the surface side). !
A sample mapping of written "caso" to spoken "kazu" looks like this, with, by convention, the lexical
string on top and the surface string on the bottom.!!
Lexical: caso
Surface: kazu !
After studying the facts listed below, write your grammar as an xfst script (named something like
portuguese.script) compile it and test it using the apply down command in xfst.!!
Standard Portuguese orthography is not always a complete guide to the pronunciation of a word
(especially in the case of the letter "x" and the vowels written "o" and “e”), so we will restrict and
simplify the data slightly.!!
The Facts to be Modeled!!
• The following description is based on the rather conservative pronunciation of Portuguese in

Porto Alegre, Rio Grande do Sul, Brazil. Because the orthography is even more conservative, the
rules will roughly characterize the phonological changes that have occurred in one dialect since
the orthography fossilized.!

• Your grammar should generate from lexical strings (using apply down) like the following, written
in standard Brazilian Portuguese orthography. We will limit the input to lowercase words in this
exercise.!

casa
cimento
me
disse
peruca
simpático
braço
árvore !

• The surface level produced by your grammar will be a kind of crude phonemic alphabet, with the
following extra symbols:!!

J — palatalized "d", similar to the phoneme spelled "j" in English "judge".
C —palatalized "t", similar to the phoneme spelled "ch" in "church".
$ — alveopalatal sibilant, like the phoneme spelled "sh" in English "ship".!
L
! phoneme spelled "lh" in Portuguese "filho" (or "gli" in Italian "figlio").!
N
! phoneme spelled "nh" in Portuguese "ninho" (like the French "gn" in "digne").!
R
! phoneme written "rr" inside words, single "r" at the beginning.!!
Because we have limited our input words to lowercase letters, the six special characters will
appear only in surface strings, never at the lexical level. The dollar sign $ character is special in
regular expressions, so precede it with a percent sign (%) to literalize it or put it in double quotes.!!

• The mapping from orthography (lexical side) to pronunciation (surface side) includes the
following:!!
- The orthographical (lexical-side) "ç" is always pronounced /s/ ; in other words, a "ç" on top 1

always corresponds to an "s" on the bottom.!
! braço
 brasu

- The orthographical "ss" is always pronounced /s/. In this and following illustrations, the lexical
and surface strings are lined up character pair by character pair, with the 0 (zero, also called
epsilon) filling out the places where a lexical symbol maps to the empty string. These zeros
will not appear in the final output.!

! interesse
 interes0i

- The orthographical "c" before "e" or "i" (or accented versions of these vowel letters) is always
pronounced /s/.!

cimento
simentu!

- The orthographical digraph "ch" is pronounced /$/.!
chato
$0atu!

- Elsewhere (i.e. not ch), orthographical "c" is always pronounced /k/.!
casa
kasa!

- No "c" should appear in surface strings.!
- The orthographical digraph "lh" is realized as /L/.!

filho
fiL0u

- The orthographical digraph "nh" is realized as /N/.!
ninho
niN0u

- Elsewhere, "h" is silent and is simply realized as 0 (zero, the empty string).!
homem
0omem!

- The orthographical digraph "rr" is always realized as /R/. Also, the single r at the beginning of
a word is always realized as /R/. Elsewhere, r:r, i.e. lexical "r" is realized as /r/.!!

carro rápido caro cantar
kaR0u Rapidu karu kantar!

- The unaccented "e" is pronounced /i/ at the end of a word, and when it appears in the context
between "p" and "r" at the beginning of a word; e.g.!

peruca case
piruka kazi!

- Between the lexical "e" and the end of word there can be an optional "s". Elsewhere e:e.!
cases
kazis!

- An "o" is pronounced /u/ at the end of a word.!
braço
brasu!

- Between the lexical "o" and the end of word there can be an optional "s". Elsewhere o:o.!

 In these explanations, we follow the IPA convention of indicating phonemes (lower-side symbols) 1

between slashes. These slashes will not really appear in the output string.

braços
brasus!

- A single "s" is pronounced /z/ when it appears between two vowels.!
camisa case
kamiza kazi!

- Elsewhere s:s (but see above where s s -> s).!
- A word-final "z" is realized as /s/.!

vez
ves!

- Elsewhere, z:z.!
- A "d" is pronounced /J/ when it appears before a SURFACE sound /i/. (N.B. This change

occurs in the environment of any SURFACE /i/, no matter what that surface /i/ may have been
at the lexical level.) Elsewhere d:d.!

lisse verdade paredes
Jis0i verdaJi pareJis!

- A "t" is pronounced /C/ when it appears before a surface sound /i/. (N.B. This change occurs
in the environment of any SURFACE /i/, no matter what that surface /i/ may have been at the
lexical level.) Elsewhere t:t.!!

tio partes
Ciu parCis!

- The vowels are a, e, i, o, u, á, é, í, ó, ú, ã, õ, â, ê, ô, ü and à. All lexical symbols map to
themselves on the surface level by default.!!

Testing Portuguese Pronunciation!!
Write a set of that performs the mappings indicated. As in the kaNpat example, the rules should be
organized in a cascade, with the composition operator (.o.) between the rules. Be very careful
about ordering your rules correctly; the rules cannot be expressed in exactly the same order as the
facts listed just above. Compile the rules using the read regex from utility in and test them using
the apply down utility.!!
You should be able to handle the following examples, entering the lexical (top) string in each case
and getting back the surface (bottom) string. (The zeros are not shown here and should not appear
in your output.) To facilitate the testing, you can type all the input (upper-side) words into a file,
called something like mydata, and tell apply down to read the various input strings from that file.!!
xfst[1] apply down < mydata!!
disse peru pedaço livro parte parede sabe cada
Jisi piru pedasu livru parCi pareJi sabi kada!
 ! !
simpático verdade casa braço chato vermelho gatinho filhos
simpáCiku verdaJi kaza brasu $atu vermeLu gaCiNu fiLus

luz case braços partes paredes me antes ninhos
lus kazi brasus parCis pareJis mi anCis niNus !
Be sure to test ALL the examples to make sure that your rules are really working as they should.
Modify your rules and re-apply the input words until the grammar is working perfectly.

